Al with Fanosoft

Artificial Intelligence for Everyone

Artificial Intelligence with Fanosoft

- Image classification with deep learning
- Pix2Pix: Image-to-Image Translation with Conditional Adversarial Nets
- ChatGPT: Generate scientific publications templates from keywords
- O Dall.E: Create images, illustration and art from a description in natural language

Al with Fanosoft – Content

Image Classification

Image Classification with Deep Learning

Image Classification Introduction

- Assign a label or class to an entire image
- Images are expected to have only one class for each image
- Examples of Image classification:
 - Animals: "Cat" or "Dog"
 - Handwritten digits: 0,1,2,..., 9
 - Food: "Salad", "Burger", "French Fries" etc.

french_fries 28.2%

caesar_salad 99.2%

greek_salad 99.6%

Image Classification Example: Cat or Dog

Dog 100%

the second second

Dog 100%

Image Classification in Fanosoft

O Click on "Process"

💮 Fanosoft

Folder Data Type Process Figures Text ILL PPT

IX NW/	Image Classification Training		Classify New Images
Path to images		Input image	
I dur to images		- input intege	
Model's name	diciviodei	or input stack	
Deep network	squeezenet	Figure Name	dlcFigure
	Train Test	\mathbb{N}	Classify
	Data augmentation options	1/	
Resize mode	resize 🔟	Y	
Random rotation (+/- degrees)	0		
Random scale (+/- %)	10		
Random translation (+/- pixels)	30		
Random X reflection	N	\sim \sim	
Random Y reflection		$\land \square$	
ix imbalanced classes by over-sampling	N	\wedge	
	Training options	1 + 1	
Solver	sgdm 🔟	$\wedge N$	
k-fold validation	1	$\Lambda \Lambda$ T	
Max epochs	30		
Initial learn rate	0.001	$\Lambda \Lambda \gamma$	
MiniBatch size during training	10		
Training (%)	70	///	
Validation (%)	20		
Testing (%)	10		
Plot colors	Navy 🔟	$\langle \rangle \rangle$	
		V	TTV

Image Classification in Fanosoft

- Deep Neural Networks used for image classification
- Select the Model / Deep network to train. Available networks are shown on the right

O 3 phases:

- Train the network with a labelled dataset
- Test the trained network
- Classify new images with a trained model
- Fanosoft uses the GPU when available to speed up the training process

squeezenet googlenet inceptionv3 densenet201 mobilenetv2 resnet18 resnet50 resnet101 xception inceptionresnetv2 shufflenet nasnetmobile nasnetlarge darknet19 darknet53 efficientnetb0 alexnet vgg16 vgg19

Image Classification - Available Networks

Network	Depth	Size	Parameters (Millions)	Image Input Size
squeezenet	18	5.2 MB	1.24	227-by-227
googlenet	22	27 MB	7.0	224-by-224
inceptionv3	48	89 MB	23.9	299-by-299
densenet201	201	77 MB	20.0	224-by-224
mobilenetv2	53	13 MB	3.5	224-by-224
resnet18	18	44 MB	11.7	224-by-224
resnet50	50	96 MB	25.6	224-by-224
resnet101	101	167 MB	44.6	224-by-224
xception	71	85 MB	22.9	299-by-299
inceptionresnetv2	164	209 MB	55.9	299-by-299
shufflenet	50	5.4 MB	1.4	224-by-224
nasnetmobile	*	20 MB	5.3	224-by-224
nasnetlarge	*	332 MB	88.9	331-by-331
darknet19	19	78 MB	20.8	256-by-256
darknet53	53	155 MB	41.6	256-by-256
efficientnetb0	82	20 MB	5.3	224-by-224
alexnet	8	227 MB	61.0	227-by-227
vgg16	16	515 MB	138	224-by-224
vgg19	19	535 MB	144	224-by-224

Image Classification - Available Networks

Image Classification – Training Dataset

- Training requires a labelled dataset
- Create one sub-directory for each class
- e.g. Food dataset

Fanos	oftData > Example Data > classificati	ion > FoodImageDataset		
	Name	Date modified	Туре	
	💋 caesar_salad	2023-03-15 15:53	File folder	
×	🜏 caprese_salad	2023-03-15 15:53	File folder	
Å	🜏 french_fries	2023-03-15 15:53	File folder	
*	🜏 greek_salad	2023-03-15 15:53	File folder	
*	namburger 🦻	2023-03-15 15:53	File folder	
*	🛃 hot_dog	2023-03-15 15:53	File folder	
*	🧞 pizza	2023-03-15 15:53	File folder	
*	🛃 sashimi	2023-03-15 15:53	File folder	
	🛃 sushi	2023-03-15 15:53	File folder	

Image Classification – Training Dataset

- In each sub-directory, copy all images that belong to this class
- e.g. "Caesar salad" content
- Fanosoft assumes number of classes = number of sub-directories

Image Classification – Training Options

• All images are resized to the input resolution of the selected neural network

• e.g. 224x224 pixels for GoogleNet

• 3 resizing options available

- Resize: Scale each image to 224x224
- Center crop: Extract a 224x224 rectangle in the center of the image
- Random crop: Extract a 224x224 rectangle area at a random position in the image

Image Classification – Training Options

- Training dataset can be artificially inflated with data augmentation
- Data augmentation improves accuracy and robustness of the trained network
- Resizing and data augmentation are performed "on the fly" when loading images from disk

	Data augmentation options						
Resize mode	resize 🔟						
Random rotation (+/- degrees)	0						
Random scale (+/- %)	10						
Random translation (+/- pixels)	30						
Random X reflection							
Random Y reflection							
Fix imbalanced classes by over-sampling							

Image Classification – Training Options

- For advanced users, it's possible to customize the training options
- By default, training is done with 70% of images, 20% is reserved for validation and 10% for final testing
- Validation is used to measure the classification accuracy on new images, that were not used during training (i.e. out-of-sample validation)
- Optional k-fold validation

	Training options
Solver	sgdm 🔟
k-fold validation	1
Max epochs	30
Initial learn rate	0.001
MiniBatch size during training	10
Training (%)	70
Validation (%)	20
Testing (%)	10
Plot colors	Navy 🖵

Click on "Path to images" And select the folder^{t ILL PPT} The folder must contain one sub-folder for each class

	Image Classification Training		Classify New Images
Path to images		Input image	
Model's name	dlcModel	or input stack	
Deep network	squeezenet 💴	Figure Name	dlcFigure
	Train		Classify
	Test	V M	
	Data augmentation options		
Resize mode			
andom rotation (+/- degrees)	0		
Random scale (+/- %)	10		
indom translation (+/- pixels)	30		
Random X reflection	N		
Random V reflection		\wedge	
alanced classes by over-sampling		$\wedge \square$	
	Training options		
Solver	sgdm 🔟		
k-fold validation	1	$\wedge \mathbf{N}$	
Max epochs	30	$\wedge \vee$	
Initial learn rate	0.001	$\Lambda \Lambda \Lambda$	
1iniBatch size during training	10		
Training (%)	70		
Validation (%)	20		
Testing (%)	10		

- 🗆 X

Folder Data Type Process Figures Text ILL PPT

	Image Classification Training		Classify New Images	$\langle \langle \rangle \rangle / /$
Path to images	Example Data (classification / Det/mages	Inputimage	Classify Herrinages	()///
Faulto images	example Data/classification/Petimages	mput mage		N NY / /
Model's name	dlcModel	or input stack		∇A
Deep network	squeezenet 💴	Figure Name	dlcFigure	
	Data a options	V/	Classify	M
Resize mode		Y/		
Random rotation (+/- degrees)		ck on "1	Train"	M_{-}
Random scale (+/- %)	10			X
Random translation (+/- pixels)	30			
Random X reflection		\sim \sim		
Random Y reflection		$\land \square$		
Fix imbalanced classes by over-sampling		$\lambda \mathbf{V}$		ヘト
	Training options	$\langle N \rangle$		1 X
		$\land \land \land$		ΔN
Solver	sgam —			XXV
k-fold validation	1	$\Lambda \mathbf{N} \mathbf{I}$		$1 \wedge \mathbb{N}$
Max epochs	30			///\T
Initial learn rate	0.001			X /A N
MiniBatch size during training	10			1/1
Training (%)	70		X	
Validation (%)	20			//
Testing (%)	10	///N		$/ / \backslash \setminus$
Plot colors	Navy 🔟	()		$/ \wedge \rangle$

3

Image-to-Image Translation with Conditional Adversarial Nets

Pix2Pix Examples

Pix2Pix Introduction

- Pix2Pix = Image-to-Image Translation with Conditional Adversarial Nets
- Training requires a paired dataset:
 - 2 folders, one for the input images and one for the output images
 - Input and output images must have the same filename
 - O e.g. "input\cmp_b004.jpg" → "output\cmp_b004.jpg"
- Fanosoft uses the GPU when available to speed up the training process

Pix2Pix Dataset Example: Facade

Pix2Pix Training Options

- O 200 epochs
- All images resized to 286x286 pixels and cropped to 256x256 pixels for training
- 70% training, 20% validation and 10% testing (configurable)
 - Training images used to train the neural network weights
 - Validation images used to show translation results on unseen images during training
 - Test images used only at the end of training to show some translation examples

	Training options	XYYL	\rightarrow
Max Epochs	200		
Resize images to (before cropping)	286	286	pixels
Crop images to	256	256	pixels
Generator's learn rate	0.0002	┝╋╵╋╋	
Discriminator's learn rate	0.0002		
Relative scaling factor for the discriminator's loss	0.5		
Relative scaling factor for the L1 loss	100		
MiniBatch size during training	1		
Depth of the generator	8	$A \land X \land \Gamma$	
Depth of the discriminator	4		
Training (%)	70		
Validation (%)	20		
Testing (%)	10		
Verbose frequency (iterations)	50	$I/A \setminus N \mid$	
Plot colors	Navy 🖵		

Pix2Pix in Fanosoft

• Click on "Process"

🗊 Fanosoft

🎲 Fanosoft

dlcModel 11

Folder Data Type Process Figures Text ILL PPT

dlcModel		Ν				
11			Image-to-Image Training	$\times////$	Ima	ge-to-Image Translation
<u>r</u>		Path to input images			Test image	
with i	input images	Path to output images			or test stack	
		Model's name	p2pModel		Figure Name p2pF	igure
1	1111		Train	JVLF		Translate
			Training options			
		Max Epochs	200			
-		Resize images to (before cropping)	286	286	pixels	
		Crop images to	256	256	pixels	
_		Generator's learn rate	0.0002			
		Discriminator's learn rate	0.0002			
		Relative scaling factor for the discriminator's loss	0.5			
		Relative scaling factor for the L1 loss	100			
X		MiniBatch size during training	1			
		Depth of the generator	8			
		Depth of the discriminator	4			
		Training (%)	70			AAK
V		Validation (%)	20			
		Testing (%)	10			
N		Verbose frequency (iterations)	50	$1/\Lambda \setminus N$		
VV		Plot colors	Navy 🔟			
N	TH	MILAN	HI	$\mathbb{N}\mathbb{N}$	JH	

 \times

🎲 Fanosoft

Folder Data Type Process Figures Text ILL PPT

dlcModel							
111			Image-to-Image Training		Ima	age-to-Image Translation	\mathbb{N}
	elect folder	Path to input images	xample Data/pix2pix/facades/A		Test image		
		Path to output images			or test stack		\sum
WIIN OUI	put images	Model's name	p2pModel		Figure Name p2p	Figure	N
A	NV		Train	JVL		Translate	$ \mathbf{n} $
			Training options				
		Max Epochs	200				\searrow
		Resize images to (before cropping)	286	286 pi	xels		
		Crop images to	256	256 pi	xels		
		Generator's learn rate	0.0002				
		Discriminator's learn rate	0.0002				
		Relative scaling factor for the discriminator's loss	0.5				\neg
		Relative scaling factor for the L1 loss	100				X
		MiniBatch size during training	1				
		Depth of the generator	8				$\boldsymbol{\wedge}$
		Depth of the discriminator	4				
	- I I A	Training (%)	70				X
		Validation (%)	20				
		Testing (%)	10				X
		Verbose frequency (iterations)	50				1/
IXV		Plot colors	Navy -				Y
M	FRAN	HIAN	HH		TH		V

 \times

🎲 Fanosoft

Folder Data Type Process Figures Text ILL PPT

-11	-	1	2	4		
a	C	VI	0	a	e	

1

1 1 3			11	11	F								
	N	11	1	//	1		Image-to-Im	nage Training			Image	e-to-Image Translat	tion
H		11	X/	X	L	Path to input images	xample Data/pi	x2pix/facades/A_		Т	est image		
	T	N	V/	1/	1	Path to output images	mple Data/pi	x2pix/facades/B_		or	r test stack		
	+	X	V	ľ	F	MClick on "Train"		rain g options		Fig	gure Name p2pFigu	Translate	
		J	γI	/		Max Epochs	200						
	-		Ń	-	-	Resize images to (before cropping)	286	286		pixels		XI	-
		1	\checkmark			Crop images to	256	256		pixels			
	-	\rightarrow		_		Generator's learn rate	0.0002						
						Discriminator's learn rate	0.0002		~				
	_	1	\mathbb{A}			Relative scaling factor for the discriminator's loss	0.5		$\wedge \uparrow \downarrow$				
		X	X			Relative scaling factor for the L1 loss	100					$1 \wedge h$	
	\prec	V	$\langle \chi \rangle$		1	MiniBatch size during training	1						
-		$\boldsymbol{\Lambda}$	۲.			Depth of the generator	8	1	λX [
	\mathcal{I}		1		1	Depth of the discriminator	4						
-		X	$\langle \rangle$	X		Training (%)	70	X				$1 \wedge \mathbf{N}$	
	V	V	11	1		Validation (%)	20		$\wedge \vee$				
-	1	XI	$\langle 1 \rangle$	V	+	Testing (%)	10		$\mathcal{N}\mathcal{N}\mathcal{A}$				
	1/	1/	$\langle \rangle$	1		Verbose frequency (iterations)	50		$\Lambda \Lambda \Lambda$				
	X	11	$\mathbf{\Lambda}$	V	4	Plot colors	Nav	у 🔟					
T	H	V	$\langle \rangle$	1	1	THAN	H	H		\square	FH	$\mathbb{N}\mathbb{N}$	

э

Generate scientific publications templates from keywords

- ChatGPT used to generate scientific publications templates from keywords!
- Format compatible with major journals (e.g. Nature Communications)
- Enter the desired keywords or select values in drop down menus
- Optionally select the figures to insert in the publication

ChatGPT Example – Scientific Paper

Chapter 1. Abstract

In this interpretation, we examine the capability of [microscopy](method) to [quantify myelination] (method process) at the individual [mechanical signaling] (biological process) point. We have shared the preliminary outcomes showing the potential of [quantitative phase imaging](methodology1) for [Gabor's holography](methodology2) and rapidly achieving [differential diagnosis](methodology3). Registering the developments of [immunofluorescent images](process results) with [dry mass videos](process) permits the assessment of [expression of proteins] (biological process1) all through the span of [remyelination](biological process2). To start the process of [quantitative phase imaging] (methodology1) based on [Gabor's holography](methodology2), we carried out a [qualitative evaluation] (process assessment) of our unlabeled photos. Initial research has revealed that the closeness and interaction of [matrix](biological structure1) plays a part in normal [B16 F10s cells] (biological structure2). Significant [mechanical signaling](biological process) difference in [anterior commissure](biological structure) was reported and notably high [anterior commissure] (biological structure) was observed in [patient cohort](study process). In conclusion, [anterior commissure](biological structure) may offer greater medically valuable data on [solid tumors](disease) and highlights the important role of [stroma-cancer interactions](disease connections). These results will provide insight on the details of the [mechanical signaling](biological process) when we increase the sensitivity and reliability of [quantitative phase imaging](methodology1) in [Gabor's holography] (methodology2) and [brain tissues](biological structures).

ChatGPT Example – Scientific Paper

Chapter 2. Introduction

[breast cancer](disease_type) is the second most common form of [solid tumors](disease) detected across the world, making up for [11.9% of all cancers](disease_statistics) discovered in [2012](year). Many [autoimmune](biological_condition) [solid tumors](disease) disorders have been linked to differences in the [expression of proteins](biological_process1) that are bound to perform [remyelination](biological_process2). [solid tumors](disease) on its own has a prevalence of [11.9% of all cancers](disease_statistics) individuals in the US. [solid tumors](disease) seems to have a [conservative estimate](statistical_term) of a national annual cost of [\$6.8 billion](cost) in the healthcare industry. Its prevalence is significantly increasing globally; it is being considered as the second major reason of [solid tumors](disease) mortality in the US in [2012](year). Furthermore, the all-cause mortality is considerably higher in [solid tumors](disease) affected individuals compared to the unaffected individuals, with an average lifespan lessened by [2012](year). The biggest number of all-cause fatality is substantially larger in [malignant pancreatic tumor cases (85%)](disease_occurence) are [solid tumors](disease). [malignant melanoma](disease1) constantly considered as the most dangerous human [cancers](disease2) and is becoming the second most significant [cancer](disease3) killer by [2012](year). The [anterior

ChatGPT in Fanosoft

O Click on "Text"

 \times

Folder Data Type Process Figures

ľ

Text

	Write-up	
	age analysis_detectors analysis_features	
	analysis_method analysis_result analysis_type	
	analytical_method apparatus	
	article_author_emails	
Click Fill	article_author_names article_figures article_filename	
to fill all keywords	article_formatting article_references article text_generator	
	article_title assessment_procedure	
	assessment_technique assessment_type bad_consequence	
Clear Fill Load Save Process Prev. Next	bad_feature	

1

Folder Data Type Process Figures

ILL

PPT

Text

1			_ N _	\'/ <i>/</i> /	X	-		chatgpt_abstract1	#chatgpt_abstract1	N —	-1/	M .			
$\mathbf{/}$	1		\sim	V/L				chatgpt_abstract2	#chatgpt_abstract2	N =	-//		1		\searrow
/	abat			fic fi		\rightarrow	\mathbf{H}	chatgpt_discussion1	#chatgpt_discussion1	N —	٦V			+	
	chai	GPTS	peci		eids			chatgpt_discussion2	#chatgpt_discussion2	N -	-1/				\sim 1
	Enter	quest	ions	in no	atura	al	┺╴	chatgpt_introduction1	#chatgpt_introduction1	N -	-/				
	lana	uade	for	chat	GPT			chatgpt_introduction2	#chatgpt_introduction2	N -	- /				\sim
							╇	chatgpt_methods1	#chatgpt_methods1	N -	- Y ,				
\sim	e.g.	vvnc	ai is c	Janc	er			chatgpt_methods2	#chatgpt_methods2	N -	-				
				ΥL				chatgpt_results1	#chatgpt_results1	N –					
								chatgpt_results2	#chatgpt_results2	N =	-				
								chemical1	#chemical1	N -		\sim			
		+	Tł	\mathbf{N}		+-	+-	chemical2	#chemical2	N -	- ^ -				
\sim			\square	$\land \sqcap$				chemical3	#chemical3	N -	- \	\sim			
	\frown	-	1 X	$\mathcal{I}\mathcal{N}$		\rightarrow	\vdash	chemical_medium	#chemical_medium	N -	- /				
			u	$\Lambda \Gamma$				chemical_quantity1	#chemical_quantity1	N =	- ₁ \				
	\square	_/	1 X	'NΝ		\rightarrow	\vdash	chemical_quantity2	#chemical_quantity2	N —	- \			+1	ľ
\sim				/// ┣				chemical_quantity3	#chemical_quantity3	N -	-11	\sum			
1			r v	NN	1			chemical_technique1	#chemical_technique1	N =	- 1	\mathbf{N}			- Y
N		+	$ \Lambda $	1 / \\		\neg	Γ	chemical_technique2	#chemical_technique2	N —	- / /	\mathcal{N}		+	Λ
$\langle \rangle$			< V .	$/\Lambda X$	\mathbf{N}			company	#company	N -	- 1	$\backslash $			< V
X	N	+1	- 1	$\Lambda \Sigma$		$ \rightarrow $		cost	#cost	N =	1 ∖ -	\boldsymbol{X}		\square	//
$\backslash \Gamma$			< V .	$/\Lambda$ \setminus	\mathbb{N}			criterion1	#criterion1	N –	-1/			レレ	
N	N	\square	XI	$\Lambda \Sigma$	TV	$\neg \downarrow$		criterion2	#criterion2	N —	-//				X
Clear	Fill	Load	Save	Process	\square	Prev.	Next	1/1			/	$\backslash [$	\mathcal{A}	$ \downarrow $	1/
				· · ·											

Write-up

 \times

_

Folder Data Type Process Figures

Text

 \times

1/		\square	\mathcal{N}	\mathbb{V}/\mathbb{A}	7			NV/A	Write-up	VA	4	1	\Box
1 J			- V	N/A	1	1	\frown	bad_structural_feature	#bad_structural_feature	N 🗖			
$ \land$			\sim	\\///				biological_cell_entry	#biological_cell_entry	N 🖵			
	1		I I	N/X		+-	Ł	biological_cell_exit	#biological_cell_exit	N -			
1			\vdash 1	N/L				biological_chemicals	#biological_chemicals	N 😐	\mathbf{A}		
		\rightarrow	$ \rangle$	Y			\mathbf{L}	biological_condition	#biological_condition	N 🖵			
1			\wedge	N/ -				biological_copies	#biological_copies	N 🗆	\checkmark		
				N/X				biological_detection_techniques	#biological_detection_techniques	N 🗆			
			+	IY				biological_environment	#biological_environment	N 💷	-		
				M				biological_equipment	#biological_equipment	N 🗆			
\neg				1.1-			\square	biological_examination	#biological_examination	N 💷			
				K.				biological_feature	#biological_feature	N 💷			
	\rightarrow	-		N		+	≁	biological_feature1	#biological_feature1	N 🗖			
\sim				I V V				biological_individual	#biological_individual	N 🗆			
. T	\rightarrow	-	Clic	k Pro	Cess	+	\vdash	biological_molecules	#biological_molecules	N 😐			
\sim			to c	reate	e the			biological_process	#biological_process	N 🗆			
٦ .	\rightarrow	-			tion	\downarrow	\vdash	biological_process1	#biological_process1	N 😐			
\sim 1			pu	JICU				biological_process2	#biological_process2	N 💷			
$ $					N.			biological_property	#biological_property	N 💷	\rightarrow		
\mathbf{N}		-				+		biological_state1	#biological_state1	N 🗖		\rightarrow	+
\sim		11	/ V					biological_state2	#biological_state2	N 😐	\sim		
V	\sim	-1		' 				biological_state3	#biological_state3	N 💷		\sim	\square
$\langle N \rangle$	I = I				\sim			biological_structural_feature	#biological_structural_feature	N 🗖	\mathbb{N}		
V	M		X		1			biological_structure	#biological_structure	N 🖵	$\boldsymbol{\mathcal{I}}$		
Clear	Fill	Load	Save	Process	\mathbb{N}	Prev.	Next			$/ \setminus \setminus$	$ \land$	H	$\Box I$

Create images, illustration and art from a description in natural language

Dall.E Examples

- Create images, illustration and art from a description in natural language
- e.g. "An oil painting by Matisse of a humanoid robot playing chess"

- Can create up to 9 images per run
- Provide a description in natural language for each image
- Provide the desired type of output: Pencil drawing, Simple sketch, etc. (see right)

Pencil drawing Simple sketch Vector art Geometrical art Real photo Line art Style of minimalism Vintage style Flat art Oil painting Pixel art

• Click on "ILL"

🚯 Fanosoft

- 🗆 X

- Preview only displays the figure on the screen.
- Submit generates a .jpeg image and a PowerPoint slide in the user's directory
 - The filename is given by the field "Figure Name"

- "A cat submarine chimera"
- Vector Art

- O "A stern-looking owl dressed a librarian"
- O Simple sketch

- "A cute tropical fish"
- O Pixel art

- "An armchair in the shape of an avocado"
- O Oil painting

- "A futuristic neon lit cyborg face"
- Vector art

- "A photo of a white fur monster standing in a purple room"
- O Flat art

- "An oil painting by Matisse of a humanoid robot playing chess"
- O Geometrical art

- "A photo of a silhouette of a person in a color lit desert at night"
- Real photo

- "A computer from the 90s in the style of vaporwave"
- O Pencil drawing

